
1 Menus

Chapter 9

Menus

Menus are as important to the Windows user interface as they are on the Macintosh.
On both systems, they are the principal means by which the user can issue
commands and direct the actions of the program. With a few minor differences,
Windows and Macintosh menus look and feel pretty much the same to the user:
they pop up when you click their title in the menu bar, offering a set of actions or
options from which to choose by pointing with the mouse. From the programmer’s
point of view, menus are integrated into the Windows message mechanism,
simplifying the task of decoding and responding to the user’s menu choices. In this
chapter, we’ll learn the basics of how Windows menus work and how to handle them
in your programs.

Windows menus come in two main flavors. A top-level menu corresponds to the
Macintosh menu bar: a horizontal series of text items that typically represent the
titles of individual menus (see Figure 9–1). In fact, a top-level menu is often referred
to informally in Windows as a “menu bar,” though it’s actually just a special type of
menu that happens to be displayed horizontally on the screen instead of vertically.
Note that, unlike its Macintosh counterpart, a top-level menu always belongs to a
particular window and appears below that window’s title bar, rather than globally at
the top of the screen. Only a top-level window—not a child—can have a menu bar.
Not every window has to have a menu bar, but every menu bar must belong to a
window.

What Macintosh programmers normally think of as a menu is called a pop-up menu
(or submenu) in Windows (Figure 9–2). This type of menu remains hidden from view
until the user clicks the mouse in its title. The menu then “pops up” on the screen,
allowing the user to choose one of its items with the mouse. Unlike those on the
Macintosh, a Windows menu remains on the screen even after the user releases the
mouse button: it isn’t necessary to hold down the button continuously in order to
keep the menu visible. If the user rolls the mouse along the menu bar to another
menu’s title, the first menu will disappear and the second menu will pop up in its
place, even without a further mouse click. The user must click the mouse a second
time to make the menu go away: either by clicking in one of its items (choosing that
item) or by clicking anywhere outside the menu (dismissing it without choosing an
item).

Menus 1

2 Menus
Figure 9–1. A top-level menu

Figure 9–2. A pop-up menu

Figure 9–2 shows the three types of item can appear on a menu:
• A command item invokes an action of some sort by issuing a message to the

window procedure of the window that owns the menu.
• A pop-up item is actually the title of another menu; choosing it with the mouse

causes the associated menu to pop up on the screen.
• A separator is a horizontal line used to separate the menu’s items into groups for

easier readability. It is not an active item and does not respond to the mouse.
Only a pop-up menu can contain separators, but the other two types can appear on
both top-level and pop-up menus. In the menu bar, pop-up items work just like the
menu titles in the Macintosh menu bar: they display a pop-up menu that hangs
down below the title, as shown in Figure 9–2. In pop-up menus, they work like
hierarchical menus on the Macintosh, bringing up a submenu to the right of the
original menu (Figure 9–3); such hierarchical submenus can be nested to any depth.
As on the Macintosh, a right-pointing triangle symbol to the right of the item cues
the user that the item invokes a submenu rather than a command. One difference
from the Macintosh is that command items, too, can appear in both top-level and
pop-up menus. Thus, although the menu bar ordinarily contains nothing but pop-up
menu titles, it can also, in unusual cases, contain items that activate an immediate
command instead of a menu.

Individual menu items can be placed in any of three states:
• An enabled item can be chosen with the mouse and will respond by invoking a

command or displaying a submenu, as the case may be.
• A disabled item is displayed in the normal way, but does not respond to the

mouse.
• A grayed item is displayed in gray instead of black and does not respond to the

mouse.

Menus 2

3 Menus
By default, all menu items are normally enabled. As on the Macintosh, you should
gray out any items that are temporarily inappropriate or inapplicable in a given
situtation, such as a Cut or Copy command when there is no current selection or a
Save command when the window doesn’t contain any unsaved changes. Disabling is
more appropriate for items that are intended to be permanently inactive, such as a
title introducing a group of related items on the menu. Grayed items highlight in the
normal way when the user points to them with the mouse, but cause no action to
occur if the mouse is clicked; disabled items are completely inert and do not even
highlight when the mouse rolls over them. The Windows function EnableMenuItem
sets the state of a menu item enables, disables, or grays a menu item.

Figure 9–3. A hierarchical pop-up menu

As on the Macintosh, a menu item can be marked with a check mark, or checked, to
show that it is currently in effect (see Figure 9–2). You can use the Windows function
CheckMenuItem to check or uncheck an item and GetMenuState to find out whether
it is currently checked or unchecked. The standard check mark symbol shown in the
figure is used by default, but it is possible to substitute a custom symbol of your
own with a Windows function called SetMenuItemBitmaps.

One particularly important pop-up menu is the system menu (Figure 9–4), which
appears when the user clicks the small program icon at the left of a window’s title
bar. The system menu typically lists commands for manipulating the window on the

Menus 3

4 Menus
screen, such as Move, Size, Minimize, Maximize, Restore, and Close, which are
normally handled by the Windows system itself through its default window
procedure. A program is free to intercept and respond to these commands itself, or
to add further commands of its own to the system menu, but most programs just let
the system handle all interactions with this menu in its own way.
Figure 9–4. The system menu

Not every pop-up menu has to be anchored to a pop-up item in the menu bar or
another menu. It’s also possible to create a floating pop-up menu that pops up right
at the mouse location in response to some action by the user, typically a click of the
right mouse button. The contents of the resulting menu can vary depending on the
context, circumstances, and area of the screen in which the mouse is pressed: for
example, many programs display the system menu as a floating pop-up when the
user clicks the right button in a window’s title bar.

As on the Macintosh, you can either build your menus “by hand,” using system
functions provided for the purpose, or load them from the disk as resources. To build
a menu from scratch, you begin by calling either the Windows function CreateMenu
to create an empty menu bar, or CreatePopupMenu to create an empty pop-up
menu. Both functions return a result of type HMENU, a handle to a menu. You can
then add items to the menu one by one, using either AppendMenu to add a new item
at the end of the menu or InsertMenu to insert it before another specified item.

One of the parameters you supply to both AppendMenu and InsertMenu is a menu
item identifier, a 16-bit integer that will uniquely identify the item in all
communications between your program and the Windows system. Item identifiers
are purely arbitrary numbers that you define for yourself: they aren’t assigned
automatically by the system, nor do they bear any necessary relation to the item’s
position on the menu. Listing 9–1 shows the item identifiers used by our WiniEdit
program, taken from the header file WiniEdit Resources.h.

Menus 4

5 Menus
Listing 9–1. WiniEdit menu-item identifiers

#define Main_Menu 1000

#define File_Menu 0
#define New_Item 1001
#define Open_Item 1002
#define Close_Item 1003
#define Save_Item 1004
#define SaveAs_Item 1005
#define Revert_Item 1006
#define Setup_Item 1007
#define Print_Item 1008
#define Exit_Item 1009

#define Edit_Menu 1
#define Undo_Item 1101
#define Cut_Item 1102
#define Copy_Item 1103
#define Paste_Item 1104
#define Delete_Item 1105
#define SelectAll_Item 1106

#define Format_Menu 2
#define Format_Item 1201
#define Default_Item 1202
#define Background_Item 1203

#define Help_Menu 3
#define Help_Item 1301
#define About_Item 1302

Besides the item identifier, both AppendMenu and InsertMenu accept a menu handle
identifying the menu to which the new item is to be added, along with a flag word
describing the item’s characteristics, as shown in Table 9–1. InsertMenu takes an
additional parameter specifying where in the menu the new item is to be inserted.
Finally, both functions accept a parameter defining the content of the new menu
item, depending on its type: a character string for a text item, a bitmap for a
graphical item, or a 32-bit data value to be passed to the drawing routine for a
custom item.

Although you can certainly build all your menus by hand if you want to, it’s
generally a better idea to read them in as resources. A single menu template
resource defines a top-level menu and all of its submenus, filling the roles of both
'MBAR' and 'MENU' resources on the Macintosh. I built all of WiniEdit’s menus
directly onscreen, using the interactive menu editor from the Visual C++
development environment. The editor produced the resource description shown in
Listing 9–2, in the description language expected by the Visual C++ resource
compiler. The resource compiler then compiled the description into a menu
template that can be read into memory with the Windows function LoadMenu.

Menus 5

6 Menus
Table 9–1. Menu-item style options
Style name Meaning

MF_STRING Text item
MF_BITMAP Graphical item
MF_OWNERDRAW Custom item (drawn by application)

MF_POPUP Pop-up item (invokes another menu)
MF_SEPARATOR Separator line

MF_ENABLED Item is enabled
MF_DISABLED Item is disabled
MF_GRAYED Item is grayed

MF_CHECKED Item is checked
MF_UNCHECKED Item is unchecked

MF_MENUBREAK Item starts new line (in menu bar) or new column (in pop-up menu)
MF_MENUBARBREAK Same as MF_MENUBREAK, but with vertical separator line between

columns in pop-up menu

Once you’ve created a top-level menu, you have to associate it with a window.
There are three ways of doing this:
• Make it the default menu for the window’s class. You do this by storing the

menu’s resource name or ID into the lpszMenuName field of the WNDCLASS
structure that you pass to RegisterClass. This is how WiniEdit does it, in its
InitProgram routine:

resourceID = MAKEINTRESOURCE(Main_Menu); // Convert resource ID to string
windowClass.lpszMenuName = resourceID; // Set menu

• Specify it as a parameter at the time the window is created. To do this, you must
first create the menu and obtain a handle to it, either by building it from scratch
with CreateMenu, AppendMenu, and InsertMenu or by loading it from a template
resource with LoadMenu. Once you have a handle to an existing menu, you can
pass it as a parameter to CreateWindow; if this parameter is non-null, it
overrides the default menu associated with the window’s class.

• Associate it directly with an existing window with the SetMenu function.
You can obtain a handle to a window’s top-level menu with GetMenu, to a pop-up
menu with GetSubMenu, or to the system menu with GetSystemMenu. Destroying a
window automatically destroys its menu (including all submenus) along with it, so
there’s no need to dispose of the menu explicitly. A menu not associated with any
window, such as a floating pop-up, must be destroyed with DestroyMenu when
you’re through with it; otherwise it will continue to take up space in memory even
after your program terminates.

Menus 6

7 Menus
Listing 9–2. WiniEdit menu resource description

Main_Menu MENU PRELOAD DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&New\tCtrl+N", New_Item
 MENUITEM "&Open...\tCtrl+O", Open_Item
 MENUITEM "&Close\tCtrl+W", Close_Item
 MENUITEM SEPARATOR
 MENUITEM "&Save\tCtrl+S", Save_Item
 MENUITEM "Save &As...\tCtrl+Alt+S", SaveAs_Item
 MENUITEM "&Revert to Saved...\tCtrl+R", Revert_Item
 MENUITEM SEPARATOR
 MENUITEM "Page Set&up...\tCtrl+Alt+P", Setup_Item
 MENUITEM "&Print...\tCtrl+P", Print_Item
 MENUITEM SEPARATOR
 MENUITEM "E&xit\tCtrl+Q", Exit_Item
 END
 POPUP "&Edit"
 BEGIN
 MENUITEM "&Undo\tCtrl+Z", Undo_Item
 MENUITEM SEPARATOR
 MENUITEM "Cu&t\tCtrl+X", Cut_Item
 MENUITEM "&Copy\tCtrl+C", Copy_Item
 MENUITEM "&Paste\tCtrl+V", Paste_Item
 MENUITEM "&Delete\tDelete", Delete_Item
 MENUITEM SEPARATOR
 MENUITEM "Select &All\tCtrl+A", SelectAll_Item
 END
 POPUP "For&mat"
 BEGIN
 MENUITEM "Text &Format...\tCtrl+F", Format_Item
 MENUITEM "&Default Format\tCtrl+D", Default_Item
 MENUITEM SEPARATOR
 MENUITEM "&Background Color...\tCtrl+B", Background_Item
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&Help\tCtrl+?", Help_Item
 MENUITEM SEPARATOR
 MENUITEM "&About WiniEdit...", About_Item
 END
END

Menus 7

8 Menus
Table 9–2 summarizes the menu-related messages that a window can receive. When
the user clicks the mouse in the window’s menu bar, Windows sends the message
WM_ENTERMENULOOP to begin tracking the mouse for menu selection (roughly
analogous to the Macintosh Toolbox’s MenuSelect routine). This message allows you
to get control at the beginning of the mouse-tracking loop in case you want to
customize the menu’s mouse-tracking behavior in some way. Theoretically, you
could intercept this message and provide your own tracking loop; but in reality, you
will almost certainly pass it to the default window procedure to track the mouse in
the standard way. A companion message, WM_EXITMENULOOP, serves as a tail hook in
case you want to do some kind of final customization after the button is released;
again, most real-world programs simply ignore this message.

Table 9–2. Menu-related messages
Message type Meaning

WM_INITMENU Top-level menu becoming active
WM_INITMENUPOPUP Pop-up menu about to be displayed

WM_MEASUREITEM Find dimensions of custom menu item
WM_DRAWITEM Draw custom menu item

WM_ENTERMENULOOP Entering menu tracking loop
WM_EXITMENULOOP Leaving menu tracking loop

WM_MENUCHAR Unknown keyboard shortcut received
WM_MENUSELECT Menu item selected

WM_COMMAND Menu command chosen
WM_SYSCOMMAND System menu command chosen

As the mouse rolls over each item in the menu, Windows sends a WM_MENUSELECT
message for the item. The default window procedure responds by highlighting the
item on the screen and, if it’s a pop-up item, displaying the submenu associated
with it. (Remember that the menu bar itself is the top-level menu, so even the first
tier of pop-ups, the ones whose titles appear in the menu bar, are considered
submenus.) You can intercept this message and customize the highlighting, if you
like, or use the occasion to provide some other form of useful feedback such as a
brief command description in a “status bar” at the bottom of your window.

Before displaying a pop-up menu, Windows sends you the message
WM_INITMENUPOPUP. This gives you a chance to enable or gray out items on the
menu according to the current context and circumstances, before they’re presented
to the user. The message’s parameters identify the menu, the pop-up item that
invoked it, and whether it’s the system menu or one of your own. (A similar
message, WM_INITMENU, allows you to modify the contents of the menu bar itself at
the very beginning of the tracking loop, when the mouse button is first pressed in it
—but it’s hard to think of a convincing way to use it.)

Menus 8

9 Menus
Listing 9–3. Handle WM_INITMENUPOPUP message

VOID DoInitMenuPopup (HWND thisWindow, WPARAM wParam, LPARAM lParam)

// Handle WM_INITMENUPOPUP message.

{
HMENU theMenu = HMENU(wParam); // Handle to menu to be adjusted
UINT menuIndex = LOWORD(lParam); // Relative position of menu in menu bar
BOOL isSystem = HIWORD(lParam); // Is it the system menu?

if (isSystem) // Is it the system menu?
FixSystemMenu (); // Enable/disable system menu commands

else
switch (menuIndex)

{
case File_Menu:

FixFileMenu (theMenu); // Enable/disable File menu commands
break;

case Edit_Menu:
FixEditMenu (theMenu); // Enable/disable Edit menu commands
break;

case Format_Menu:
FixFormatMenu (theMenu); // Enable/disable Format menu commands
break;

case Help_Menu:
FixHelpMenu (theMenu); // Enable/disable Help menu commands
break;

} /* end switch (menuIndex) */

} /* end DoInitMenuPopup */

The parameters to the WM_INITMENUPOPUP message identify the menu being
displayed, the item that invoked it, and whether it’s the system menu or one of your
own. WiniEdit’s routine for handling this message, DoInitMenuPopup (Listing 9–3),
simply extracts the identifying information from the parameters and then
dispatches on the item ID to a specialized routine for initializing that particular
menu. Listing 9–4 shows one of these routines, FixEditMenu, for illustration. This
routine asks the window’s edit control for the length of the text displayed in the
window, the length of the current selection, and whether the last editing operation
can be undone. It uses this information to decide whether to enable or gray the
Undo, Cut, Copy, Delete, and Select All commands; for the Paste command, it
checks for the availability of text data on the clipboard. Other WiniEdit routines
perform the equivalent task of enabling and graying items, according to current
conditions, on the File, Format, and Help menus.

Menus 9

10 Menus
Listing 9–4. Enable/disable Edit menu commands

Menus 10

11 Menus
VOID FixEditMenu (HMENU theMenu)

// Enable/disable Edit menu commands.

{
BOOL canUndo; // Can editor support Undo command?
LONG selStart; // Character position at start of selection
LONG selEnd; // Character position at end of selection
BOOL canPaste; // Is there text on the clipboard?
LONG textLength; // Number of characters in document

canUndo = SendMessage(TheEditor, EM_CANUNDO, 0, 0); // Is Undo available?
if (canUndo)

EnableMenuItem (theMenu, Undo_Item, MF_ENABLED); // Enable Undo command
else

EnableMenuItem (theMenu, Undo_Item, MF_GRAYED); // Gray out Undo command

SendMessage (TheEditor, EM_GETSEL, // Get selection range
 WPARAM(&selStart), LPARAM(&selEnd));
if (selStart != selEnd) // Is there a selection?

{
EnableMenuItem (theMenu, Cut_Item, MF_ENABLED); // Enable Cut command
EnableMenuItem (theMenu, Copy_Item, MF_ENABLED); // Enable Copy command
EnableMenuItem (theMenu, Delete_Item, MF_ENABLED); // Enable Delete command

} /* end if (selStart == selEnd) */
else

{
EnableMenuItem (theMenu, Cut_Item, MF_GRAYED); // Gray out Cut command
EnableMenuItem (theMenu, Copy_Item, MF_GRAYED); // Gray out Copy command
EnableMenuItem (theMenu, Delete_Item, MF_GRAYED); // Gray out Delete command

} /* end else */

canPaste = IsClipboardFormatAvailable(CF_TEXT); // Does clipboard contain text?
if (canPaste)

EnableMenuItem (theMenu, Paste_Item, MF_ENABLED); // Enable Paste command
else

EnableMenuItem (theMenu, Paste_Item, MF_GRAYED); // Gray out Paste command

textLength = GetWindowTextLength(TheEditor); // Get length of text
if (textLength > 0) // Any text in document?

EnableMenuItem (theMenu, SelectAll_Item, MF_ENABLED); // Enable Select All command
else

EnableMenuItem (theMenu, SelectAll_Item, MF_GRAYED); // Gray out Select All command

} /* end FixEditMenu */

Menus 11

12 Menus
Two more menu messages, WM_MEASUREITEM and WM_DRAWITEM, are used for drawing
custom menu items. (You may recall from Chapter 7 that these same two messages
are also used for custom controls.) Most typical menus consist entirely of text items,
which Windows already knows how to draw. Graphical items also present no
problem, since they carry their own bitmaps with them. If you want to use custom
items in your menus, however, then of course it’s up to you to draw them yourself.
Before drawing such an item for the first time, Windows sends you the message
WM_MEASUREITEM, asking you to supply the item’s dimensions so it knows how much
space to reserve on the menu. Then, each time the item has to be drawn, Windows
sends you a WM_DRAWITEM message. One of the parameters to this message is a
data structure containing all the information needed to draw the item, including a
handle to a device context. Your window procedure must respond to the message by
drawing the item in the given context. Customizing menu items is an unusual thing
for a program to do, and we won’t spend any time on it here; if you’re interested,
you can find more information in the Win32 Programmer’s Reference.

Listing 9–5. Handle WM_COMMAND message

VOID DoCommand (HWND thisWindow, WPARAM wParam, LPARAM lParam)

// Handle WM_COMMAND message.

{
UINT notifyCode = HIWORD(wParam); // Notification code from child control
UINT itemID = LOWORD(wParam); // Item ID of message originator
HWND theControl = HWND(lParam); // Handle to control sending notification

switch (notifyCode)
{

case 0:
case 1:

DoMenuCommand (itemID); // Handle menu command
break;

default:
DoNotification (itemID, theControl, notifyCode); // Handle control notification
break;

} /* end switch (notifyCode) */

} /* end DoCommand */

Of course, the most important menu message of all is WM_COMMAND, which tells you
that the user has chosen a command item from one of your menus. Much of the real
work of a program gets done in response to this message. (Another message,
WM_SYSCOMMAND, reports that an item has been chosen from the system menu,
rather than one of your own. You’ll usually just want to let the default window
procedure handle this one; normally, the only reason for processing it yourself
would be if you’ve added one or more commands of your own to the system menu.)

Menus 12

13 Menus
Listing 9–6. Handle menu command

VOID DoMenuCommand (UINT itemID)

// Handle menu command.

{
switch (itemID)

{

/* File menu */

case New_Item:
DoNew (); // Handle New command
break;

case Open_Item:
DoOpen (); // Handle Open... command
break;

case Close_Item:
DoClose (); // Handle Close command
break;

case Save_Item:
DoSave (); // Handle Save command
break;

case SaveAs_Item:
DoSaveAs (); // Handle Save As... command
break;

case Revert_Item:
DoRevert (); // Handle Revert to Saved... command
break;

case Setup_Item:
DoSetup (); // Handle Page Setup... command
break;

case Print_Item:
DoPrint (); // Handle Print... command
break;

case Exit_Item:
DoExit (); // Handle Exit command
break;

/* Edit menu */

case Undo_Item:
DoUndo (); // Handle Undo command
break;

Menus 13

14 Menus
Listing 9–6. Handle menu command (continued)

case Cut_Item:
DoCut (); // Handle Cut command
break;

case Copy_Item:
DoCopy (); // Handle Copy command
break;

case Paste_Item:
DoPaste (); // Handle Paste command
break;

case Delete_Item:
DoDelete (); // Handle Delete command
break;

case SelectAll_Item:
DoSelectAll (); // Handle Select All command
break;

/* Format menu */

case Format_Item:
DoFormat (); // Handle Text Format... command
break;

case Default_Item:
DoDefaultFormat (); // Handle Default Format command
break;

case Background_Item:
DoBackground (); // Handle Background Color... command
break;

/* Help menu */

case Help_Item:
DoHelp (); // Handle Help command
break;

case About_Item:
DoAbout (); // Handle About WiniEdit... command
break;

default:
MessageBeep (MB_OK); // Error: control should never
break; // reach this point

} /* end switch (itemID) */

} /* end DoMenuCommand */
Menus 14

15 Menus
We’ve already encountered the WM_COMMAND message in Chapter 7, where it was
used to report events affecting a control to the control’s parent window. Recall that,
when the message comes from a control, the high-order word of the wParam
parameter contains a notification code identifying the nature of the event being
reported. If the notification code is 0, the message is from a menu item instead of a
control. In this case, the low-order word of wParam gives the item identifier for the
item that was chosen; lParam is irrelevant and is ignored. (A notification code of 1
denotes a menu item invoked from the keyboard rather than with the mouse; we’ll
be discussing this case in the next section.)

When WiniEdit’s window procedure, DoMessage, receives a WM_COMMAND message, it
calls the DoCommand routine shown in Listing 9–5. This routine simply unpacks the
identifying information from the message parameters, examines the notification
code to see if it’s a menu command or a control notification, and calls the applicable
WiniEdit routine, either DoMenuCommand or DoNotification. DoMenuCommand (Listing
9–6) is nothing but one big switch statement that relays control, in turn, to a set of
even more specialized routines that handle each specific menu command. Notice
that the identifiers used here to designate the various menu items (New_Item,
Open_Item, and so on) are the same ones we saw earlier in Listing 9–1. These are
constants defined by the program itself in the header file WiniEdit Resources.h. I
associated them with the menu items when I built the menu onscreen with the
Visual C++ interactive menu editor; the editor then incorporated them into the
menu’s resource description, as you can see by referring back to Listing 9–2.

As on the Macintosh, you can provide keyboard shortcuts to allow the user to invoke
menu items from the keyboard rather than with the mouse. In fact, Windows allows
two different kinds of keyboard shortcut: mnemonics and accelerators. Although
they both serve the same basic purpose, the two have evolved separately, side by
side, for different historical reasons. A good Windows program should support both.

Mnemonics
Right from the start, the Macintosh was designed with the mouse in mind. The
mouse (or trackball or other equivalent pointing device) is an integral, indispensable
part of the system: no Macintosh has ever been sold without one, or ever will be. In
the IBM/DOS/Intel world, the mouse has always been regarded as an optional
peripheral device, a gimmicky afterthought on what was essentially a keyboard- and
character-based system. So Windows programs have always been expected to
accommodate their mouseless users by providing a keyboard alternative for every
mouse action.

Menus 15

16 Menus

In keeping with that principle, Windows defines a standard keyboard interface for
choosing items from a menu:
• The Alt key toggles menu selection mode on or off. When first pressed, it enters

menu mode and highlights the first item in the menu bar (normally a menu title);
once in menu mode, pressing the Alt key escapes from it.

• The combination Alt-space displays the system menu.
• The left and right arrow keys cycle the highlight from item to item within the

menu bar (including the system menu).
• The Enter key chooses the currently highlighted item, either activating a

command or displaying a pop-up menu at the next level of the menu hierarchy.
• The up and down arrows cycle among the items within a pop-up menu.
• The Esc key backs up to the previous level of the menu hierarchy, or exits menu

mode from the top level.
All of this standard behavior is implemented automatically by the default window
procedure, so it takes no special effort on your part to support it. What you can do,
however, is define mnemonics for your menus and menu items, allowing the user to
choose them directly by typing a character from the keyboard while in menu mode,
rather than laboriously cycling to them with the arrow keys. For example, if F is the
mnemonic for the File menu and O is the mnemonic for the Open... item within
that menu, then the user can invoke the Open... command by typing Alt to enter
menu mode, then F for File and O for Open....

You define a mnemonic for a menu item by including an ampersand character (&) in
the item’s text, either in your menu template resource or in the text string that you
pass as a parameter to AppendMenu or InsertMenu. The character immediately
following the ampersand will become the item’s mnemonic. Windows will
automatically underline the character when displaying that item on the menu, as a
cue to the user, and will invoke the item when the user types the character in menu
mode. In Listing 9–2, for instance, you’ll notice that WiniEdit’s menu template
defines a pop-up menu named &Edit containing items named &Undo, Cu&t, &Copy,
&Paste, &Delete, and Select &All. Windows will display the items with the
indicated characters underlined (Edit, Undo, Cut, Copy, Paste, Delete, Select All),
and will interpret these characters as mnemonics when typed in menu mode.

In defining your mnemonics, be careful not to confuse your user by using the
same character to stand for two different items on the same menu. It’s your
responsibility to make sure your mnemonics are unique and unambiguous—
as WiniEdit does, for instance, by using T as the mnemonic for Cut, to
distinguish it from C for Copy. (It’s OK to use the same mnemonic character
on two different menus, or at different levels of the menu hierarchy, but not
twice on the same menu.) If you do make this mistake, Windows will utter no
complaint; it will just cycle from one of the conflicting items to the next each
time the user types the ambiguous mnemonic character.

Menus 16

17 Menus
Accelerators
The second form of keyboard shortcut, accelerators, are more like the ones we’re
used to on the Macintosh. Instead of entering a special “menu mode” with the Alt
key, an accelerator is simply a modeless keystroke that the user can type at any
time, such as Ctrl-S for Save or Ctrl-P for Print. It’s just a convenient alternative to
using the mouse, not a substitute for the benefit of users who don’t have a mouse
in the first place.
Listing 9–7. WiniEdit accelerator table description
Accel_ID ACCELERATORS PRELOAD DISCARDABLE
BEGIN
 "A", SelectAll_Item, VIRTKEY, CONTROL
 "B", Background_Item, VIRTKEY, CONTROL
 "C", Copy_Item, VIRTKEY, CONTROL
 "D", Default_Item, VIRTKEY, CONTROL
 "F", Format_Item, VIRTKEY, CONTROL
 "N", New_Item, VIRTKEY, CONTROL
 "O", Open_Item, VIRTKEY, CONTROL
 "P", Print_Item, VIRTKEY, CONTROL
 "P", Setup_Item, VIRTKEY, CONTROL, ALT
 "Q", Exit_Item, VIRTKEY, CONTROL
 "R", Revert_Item, VIRTKEY, CONTROL
 "S", Save_Item, VIRTKEY, CONTROL
 "S", SaveAs_Item, VIRTKEY, CONTROL, ALT
 "V", Paste_Item, VIRTKEY, CONTROL
 VK_BACK, Undo_Item, VIRTKEY, ALT
 VK_DELETE, Cut_Item, VIRTKEY, SHIFT
 VK_F1, Help_Item, VIRTKEY
 VK_F2, Cut_Item, VIRTKEY
 VK_F3, Copy_Item, VIRTKEY
 VK_F4, Paste_Item, VIRTKEY
 VK_HELP, Help_Item, VIRTKEY, CONTROL
 VK_HELP, Help_Item, VIRTKEY, SHIFT, CONTROL
 VK_INSERT, Copy_Item, VIRTKEY, CONTROL
 VK_INSERT, Paste_Item, VIRTKEY, SHIFT
 "W", Close_Item, VIRTKEY, CONTROL
 "X", Cut_Item, VIRTKEY, CONTROL
 "Z", Undo_Item, VIRTKEY, CONTROL
END

You define your program’s accelerators with a data structure called an accelerator
table. Each entry in the table associates a keystroke with an item identifier,
normally that of an item on one of your menus. You can either build the accelerator
table from scratch with the Windows function CreateAcceleratorTable or (more
commonly) define it as a resource and read it in at program initialization time with
LoadAccelerators. Listing 9–7 shows the definition of WiniEdit’s accelerator table,
taken from the resource description file WiniEdit.rc. Like other resources that
we’ve looked at, this one was built onscreen with the Visual C++ interactive
resource editor and written out as a text-based resource description, then in turn
compiled by the resource compiler into a resource of type RT_ACCELERATOR in the
program’s executable file.

Menus 17

18 Menus
Listing 9–8. Initialize accelerator table

VOID InitAccelerators (VOID)

// Initialize accelerator table.

{
CHAR *resourceID; // Resource ID in string form

resourceID = MAKEINTRESOURCE(Accel_ID); // Convert resource ID
AccelTable = LoadAccelerators(ThisInstance, resourceID); // Load accelerator table

} /* end InitAccelerators */

Listing 9–9. WiniEdit main program loop

VOID MainLoop (VOID)

// Execute one pass of main program loop.

{
MSG theMessage; // Next message to process
BOOL translated; // Was message translated as a keyboard accelerator?

ContinueFlag = GetMessage(&theMessage, NULL, 0, 0); // Get next message

translated = TranslateAccelerator (TheWindow, AccelTable, &theMessage);
// Check for keyboard accelerator

if (!translated) // Was the message an accelerator?
{

TranslateMessage (&theMessage); // Convert virtual keys to characters
DispatchMessage (&theMessage); // Send message to window procedure

} /* end if (!translated) */

} /* end MainLoop */

The WiniEdit routine InitAccelerators (Listing 9–8), part of WiniEdit’s one-time
initialization sequence, reads in the accelerator table resource and stores its handle
in a global variable, AccelTable. Later, as the program’s message loop (Listing 9–9)
retrieves messages from the message queue, it passes each one to the Windows
function TranslateAccelerator, along with the global accelerator table handle. If
the message is a keystroke (message type WM_KEYDOWN), TranslateAccelerator
looks it up in the accelerator table. If it finds an accelerator for that keystroke, it
generates an equivalent WM_COMMAND message and dispatches it directly to the
program’s window procedure (unless it’s the identifier of a disabled or grayed menu
item). The WM_COMMAND message carries a notification code of 1 to identify it as an
accelerator command, along with the item identifier associated with the given

Menus 18

19 Menus
keystroke in the accelerator table. (In Listing 9–7, for instance, if the keystroke were
Ctrl-A, the corresponding item identifier would be SelectAll_Item.)
TranslateAccelerator returns a boolean result to let the calling program know
whether the incoming message was translated; if the result is TRUE, WiniEdit’s
message loop skips processing the raw keyboard message, knowing that an
equivalent WM_COMMAND message has been dispatched in its place.

Although they resemble the keyboard shortcuts on the Macintosh, Windows
accelerators are actually more flexible in a number of ways. For one thing, whereas
Macintosh keyboard shortcuts are limited to combinations involving the Command
key, Windows lets you define an accelerator for any keystroke you like. An
accelerator can use any combination of the modifier keys Ctrl, Alt, and Shift, or it
can use no modifiers at all. The WiniEdit accelerator table in Listing 9–7, for
instance, defines the unmodified function keys F1 to F4 as accelerators for the Help,
Cut, Copy, and Paste commands, respectively. In an application that doesn’t require
direct text entry from the keyboard, you could even use plain, unmodified letter
keys as accelerators: S for Save instead of Ctrl-S, for example. Notice also that,
unlike the Macintosh Toolbox, Windows lets you define more than one accelerator
for the same operation. WiniEdit, for instance, provides three different accelerators
for the Cut command: Shift-Delete (the Windows standard), Ctrl-X (the Macintosh
standard, with the Ctrl key substituting for the Macintosh Command key), and F2
(also common on the Macintosh).

Table 9–3 lists some accelerators that are considered standard in the Windows/DOS
world. They aren’t particularly logical or easy to remember, but Windows users
expect them to work, so you should make sure your program supports them. The
system accelerators listed in Table 9–4, on the other hand, are implemented
automatically by the default window procedure; you don’t need to anything special
to support them, just make sure your own accelerators don’t conflict with them. The
Macintosh convention of using the first four keys on the bottom row of the keyboard
for the standard editing commands (Ctrl-Z for Undo, Ctrl-X for Cut, Ctrl-C for Copy,
Ctrl-V for Paste) also appears to be gaining acceptance in Windows, so you should
probably support them, too. Many Macintosh programs also use the first four
function keys (F1–F4) as shortcuts for these same four editing commands.
Unfortunately, as shown in Table 9–4, F1 is used almost universally in Windows as a
help key, so it isn’t available for the Undo command; but you can still use F2, F3,
and F4 for Cut, Copy, and Paste, as we’ve already seen that WiniEdit does.

Table 9–3. Standard Windows accelerators
Keystroke Command equivalent

Alt-Backspace Undo
Shift-Delete Cut
Ctrl-Insert Copy
Shift-Insert Paste
Finally, notice that Windows accelerators, unlike their Macintosh counterparts, are
not directly tied to the program’s menu structure. On the Macintosh, by definition,

Menus 19

20 Menus
every Command-key shortcut stands for a menu item. You can’t define an operation

Menus 20

21 Menus
that’s strictly keyboard-based and not also available by selecting from a menu with
the mouse. (You could implement such an operation by hand, of course, but there’s
no way to do it directly through the Toolbox.) Windows doesn’t have this restriction:
the item identifiers in the accelerator table are simply integer constants that you
define for yourself in your program’s resource header file. Although it’s common to
use the same identifier for both an accelerator and a menu item, there’s no law that
this must be so. All the accelerator table says is that a certain keystroke typed by
the user should be converted into a WM_COMMAND message with a certain value for its
item identifier; the interpretation of that identifier is strictly up to your window
procedure. So if you want to define an item identifier that corresponds to an
accelerator keystroke only and has no corresponding menu item, you’re free to do
so. Whether this is a desirable user-interface feature can be debated either way; but
the option is available if you want it.

Table 9–4. System accelerators
Keystroke Meaning

Alt-Esc Switch to next application
Shift-Alt-Esc Switch to previous application
Alt-Tab Cycle to next application
Shift-Alt-Tab Cycle to previous application

Ctrl-Esc Open task bar’s Start menu
Alt-space Open main window’s system menu
Alt-hyphen Open subwindow’s system menu (Multiple Document Interface)

Alt-F4 Close main window
Ctrl-F4 Close subwindow (Multiple Document Interface)

F13 Copy snapshot of screen to clipboard
Alt-F13 Copy snapshot of active window to clipboard

F1 Help

Unlike the Macintosh Toolbox, Windows does not automatically incorporate keyboard
accelerators into a menu when displaying it on the screen. If you want your
accelerators to appear on the menu, you have to include them explicitly as part of
each item’s text. You can see an example of this in Listing 9–2, where, for instance,
the text of the Cut menu item is defined as

Cu&t\tCtrl+X
As we saw in the last section, the ampersand (&) introduces the item’s Alt-key
mnemonic; the ampersand itself will not appear on the menu, but the character
following it (in this case, t) will be underlined as the mnemonic. The item’s
accelerator, Ctrl+X, will be displayed next to it on the menu; the \t sets it off with
a tab character to space it out to the right edge of the menu. The complete menu
item will thus look like this:

Cut Ctrl+X

Menus 21

22 Menus
Windows will automatically calculate the tab width so that all the menu’s contents
align neatly on the screen. Note that the accepted onscreen convention for
combination keystrokes in Windows is to separate the modifier key from the
printable character with a plus sign (+), not a hyphen as on the Macintosh (and as
I’ve been using in this book): Ctrl+X, not Ctrl-X.

When you create an accelerator table in the normal way, by reading it in as a
resource with LoadAccelerators, you don’t need to worry about disposing of it:
Windows will destroy it for you automatically when your program terminates.
However, if you build it from scratch with CreateAcceleratorTable, you have to
destroy it explicitly with DestroyAcceleratorTable before exiting from your
program, or it will live on in memory after you’re gone, like the Cheshire cat’s grin.

Table 9–5 summarizes some common Windows functions relating to menus and
accelerators. We’ve already discussed some of them in this chapter; you can learn
about the rest in the Win32 Programmer’s Reference.

Menus 22

23 Menus
Table 9–5. Common menu functions
Function Mac counterpart Purpose

CreateMenu ————— Create top-level menu
CreatePopupMenu NewMenu Create pop-up menu
LoadMenu GetNewMBar, GetMenu Load menu from template resource
LoadMenuIndirect ————— Create menu from template in memory
DestroyMenu DisposeMenu Destroy menu

AppendMenu AppendMenu Add item at end of menu
InsertMenu InsertMenu,

InsMenuItem
Add item anywhere in menu

DeleteMenu DeleteMenu,
DelMenuItem

Delete item and destroy associated
menu, if any

RemoveMenu DeleteMenu,
DelMenuItem

Remove item without destroying
associated menu, if any

SetMenu SetMenuBar Set window’s menu bar
GetMenu GetMenuBar Get handle to window’s menu bar
GetSubMenu GetMHandle Get handle to pop-up menu
GetSystemMenu ————— Get handle to system menu
IsMenu ————— Is handle a menu handle?

GetMenuItemCount CountMItems Get number of items in menu
GetMenuItemID ————— Get item identifier by position
GetMenuString GetItem Get text of menu item

GetMenuState ————— Get menu item attributes
ModifyMenu SetItem, EnableItem,

DisableItem,
CheckItem,
SetItemIcon

Change text, appearance, or attributes
of menu item

EnableMenuItem EnableItem,
DisableItem

Enable, disable, or gray menu item

CheckMenuItem CheckItem Check menu item
SetMenuItemBitmaps SetItemMark Set bitmap representing check mark
GetMenuCheckMarkDimen
sions

————— Get bitmap dimensions for check mark

DrawMenuBar DrawMenuBar Redraw menu bar
HiliteMenuItem HighlightMenu Highlight menu item on screen

TrackPopupMenu MenuSelect Track in menu

CreateAcceleratorTabl
e

————— Create accelerator table in memory

Menus 23

24 Menus
LoadAccelerators ————— Load accelerator table from resource
DestroyAcceleratorTab
le

————— Destroy accelerator table

CopyAcceleratorTable ————— Copy accelerator table

TranslateAccelerator MenuKey Translate accelerator to menu
command

Menus 24

25 Menus
• The Macintosh user can issue
commands to a program by choosing
menu items with the mouse.

• The Windows user can issue
commands to a program by choosing
menu items with the mouse.

• A Macintosh menu item can
either invoke a command or pop up a
submenu.

• A Windows menu item can
either invoke a command or pop up a
submenu.

• Macintosh menu items can be
disabled, preventing them from
responding to the mouse.

• Windows menu items can be
disabled or grayed, preventing them
from responding to the mouse.

• Macintosh menu items can be
marked with a check mark or other
symbol to show that they are
currently in effect.

• Windows menu items can be
marked with a check mark or other
symbol to show that they are
currently in effect.

• Macintosh menus and menu
bars can be built from scratch or
read in as resources.

• Windows menus and menu
bars can be built from scratch or
read in as resources.

• A Macintosh program can
define keyboard shortcuts to allow
the user to invoke menu items from
the keyboard.

• A Windows program can define
keyboard mnemonics and
accelerators to allow the user to
invoke menu items from the
keyboard.

...Only Different
• The Macintosh has one global
menu bar at the top of the screen.

• A Windows menu bar belongs
to a single window.

• The Macintosh menu bar is a
separate entity from the menus it
contains.

• A Windows menu bar is simply
a menu that’s displayed horizontally
instead of vertically.

• Every item in the Macintosh
menu bar is a menu title.

• The Windows menu bar can
contain command items as well as
menu titles.

• Macintosh menus disappear
when the user releases the mouse
button.

• Windows menus remain visible
until the user clicks the mouse
button a second time.

• The Macintosh has an Apple
menu containing desk accessories
and other frequently used items.

• Windows has a system menu
containing standard commands for
manipulating the window on the
screen.

Menus 25

26 Menus
• Macintosh menu items are
identified by their sequential position
within the menu.

• Windows menu items are
identified by an arbitrary ID number
assigned by the program.

• When the user clicks the
mouse in the menu bar, a Macintosh
program must explicitly call a
Toolbox tracking routine,
MenuSelect, to track the mouse.

• When the user clicks the
mouse in the menu bar, a Windows
program can leave the job of
tracking the mouse to the default
window procedure.

• A Macintosh program obtains
the menu item chosen by the user as
a direct function result returned by
MenuSelect.

• A Windows program obtains
the menu item chosen by via a
WM_COMMAND message sent through
the normal message mechanism.

• A Macintosh program must
either enable and disable its menu
items incrementally as conditions
change, or explicitly update the state
of its menus before calling
MenuSelect.

• A Windows program receives a
message, WM_INITMENUPOPUP, telling
it when to update the state of a
menu.

• Macintosh keyboard shortcuts
are defined as part of the menu
structure itself.

• Windows accelerators are
defined in a separate accelerator
table that can be read in as an
independent resource.

• Macintosh keyboard shortcuts
are always invoked by key
combinations involving the
Command key.

• Windows accelerators can be
invoked by any key combination at
all.

• A Macintosh keyboard shortcut
must invoke an existing menu item.

• A Windows accelerator can
invoke any operation at all, whether
it exists as an independent menu
item or not.

• A Macintosh menu item can
have at most one keyboard shortcut.

• A Windows menu item can
have any number of accelerators.

Menus 26

